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Slow viscous flow past a sphere in a cylindrical tube 

By HOWARD BRENNER and JOHN HAPPEL 
Department of Chemical Engineering, Nezu Fork Univprsit-v 

(Received 29 November 1957) 

SUMMARY 
A theoretical treatment is presented for the slow flow of a 

viscous fluid through a cylindrical container within which a small 
spherical particle is confined. The sphere is situated in an arbitrary 
position within the cylinder and moves at constant velocity parallel 
to the walls. Approximate expressions are derived which give 
the frictional drag, rotational couple, and permanent pressure drop 
caused by the presence of this obstacle in the original Poiseuillian 
field of flow. The primary parameters involved are the ratio of 
sphere to cylinder radius and fractional distance of the particle 
from the longitudinal axis of the cylinder. With appropriate 
modifications, the results are also applicable to a sphere settling 
in a quiescent fluid. This yields the necessary boundary corrections 
to Stokes law arising in connection with devices such as the falling 
ball viscometer when the sphere is eccentrically located. 

1.  INTRODUCTION 
The problem of viscous flow through a cylindrical duct containing 

particles of approximately spherical shape is of interest in connection with 
a variety of processes, such as fluidization, elutriation, and flow through 
fixed and moving beds of solids. A logical start towards elucidation of the 
hydrodynamic behaviour of these systems is undertaken here by considering 
the slow translation of a single spherical particle moving parallel to the 
longitudinal axis of an infinitely long circular cylinder through which a 
viscous fluid is flowing. The sphere may occupy any preassigned position. 
This is in contrast to the work of previous investigators who have concerned 
themselves exclusively with the axisymmetrical case in which the sphere is 
restricted to the cylinder axis. Haberman (1956,1957) has recently reviewed 
the literature on this subject. 

In a companion article by the authors (Happel & Brenner 1957), the 
results of the present theoretical investigation have been employed to discuss 
the behaviour of dilute fluidized beds at low Reynolds numbers. 

2. NOMENCLATURE AND BOUNDARY CONDITIOKS 

In the treatment to follow, it is necessary to resort to a variety of different 
coordinate systems. These are : Cartesian coordinates (x, y, z ) ,  spherical 
coordinates ( r ,  8, $), and cylindrical coordinates (p, 4, z), each having a 
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common origin at the sphere centre. It is also necessary to utilize Cartesian 
coordinates ( X ,  Y ,  Z), and cylindrical coordinates (R, a, Z), both originating 
along the cylinder axis and chosen so as to make x = 2. Relations between 
these various systems of coordinates are depicted in figure 1. 

Howard Brenner and John Happel 

Figure 1. Relations between different coordinate systems employed. 
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w 
Figure 2. Definition sketch. 
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The sphere moves with an arbitrary constant velocity U relative to the 
cylinder wall in the direction of z-positive, paralIel to the cylinder axis. 
At the same time, the fluid flows in laminar flow with a mean velocity of 8 U,, 
in the same direction. The  sphere radius is a, the cylinder radius is R,, 
and the centre of the sphere is situated at a distance 6 from the cylinder 
axis, as shown in figure 2. 

I n  terms of a coordinate system which moves with the sphere, the usual 
hypothesis of no relative motion at fluid-solid interfaces results in the 
following boundary conditions which define the fluid velocity field v : 

and 

At large distances from the sphere, z = & co, the disturbance propagated 
by the sphere vanishes and the fluid velocity distribution becomes 
Poiseuillian. This gives rise to the additional boundary condition, 

v = O  a t r = a ,  (2.1) 

v = -i, U at R = R,. (2.2) 

v = iz{ U,(1 - R2/R!)- U }  at x = & co. (2.3 1 

v2v = (l/P)VP, (2.4 1 

v . v  = 0. (2.5) 

The equations of motion to be satisfied are 

together with the continuity equation for incompressible fluids, 

Here p is the viscosity and p the viscous pressure. Use of the linearized 
creeping motion equations restricts the validity of the final results to 
situations in which the relative particle Reynolds number, 

is small, where 7 is the kinematic viscosity. 
As in a previous study (Happel & Byrne 1954), the above boundary- 

value probIem is solved by the method of ' reflections '. Thus, the solution 
consists of the sum of a series of velocity fields, all of which satisfy (2.4) 
and (2.5), and each partially satisfying the boundary conditions as follows : 

2 4  UO(1 -b2/R:) - Ulh, 

do) = i,{ U,(1 - R2/Rg) - U},  (2.6) 
-do) at r = a, 

0 at z = co (i.e. r = co), 
vtu = i 

- v ( ~ )  at Y = a, 

0 at z = co (i.e. r = a), I (2.9) v(3) = 

etc., with as many fields taken as needed for an appropriate degree of 
approximation. The  field v satisfying the boundary conditions (2.1) to (2.3) 
is then obtained in the form 

v = d o )  + v(1) + v(2) + v(3) + . . . , (2.10) 
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and the corresponding pressure field is given by 
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p = $0) + p  +p@) +p(3) + . . . . (2.11) 

The success of this method of solution depends upon the linearity of the 
equations of motion. Its advantage resides in the fact that it is only necessary 
to consider boundary conditions associated with one surface at a time. 

If we let W and L, respectively, represent the frictional force and 
rotational moment experienced by the sphere, there are analogous relations 
,of the form 

w = W(0) + W(1) + W(2) + W(3) + . . . , (2.12a) 

and L = L(O)+L(l)+L(2)+L(3)+ ... . (2.12b) 

Furthermore, if APs represents the additional pressure drop (above that 
due to the original Poiseuillian field, APo) experienced by the fluid as a 
result of the presence of the sphere, then 

AP,, = AP, i- AP, +AP3 + AP, + ..., (2.13) 
where the pressure drop, APi, associated with field i is simply the difference 
between the viscous pressure pci) at Z =  - co and 2 = + co. There is 
no ambiguity in this definition of pressure drop, since as Z+ -t- co the 
pressure becomes constant across the tube and, hence, independent of @ 
and R. It will prove convenient, therefore, in calculating pressure drop 
to evaluate the pressures pci) at R = R,. Except for an arbitrary additive 
constant, which can be taken to be zero without loss of generality, the 
conditions of symmetry about the plane 2 = 0 demand that the pressure 
be an odd function of 2. 

APi = - 2 lim ( p @ ) ,  = R,, (2.14) 

where the subscript denotes evaluation of the function at the cylinder 
wall. 

These observations lead to the formula 

z++ m 

3. THE FIRST REFLECTED FIELD 

The unperturbed field, v(O), is defined in (2.6). It is easy to demonstrate 
that 

WCO) = 0, (3.1) 
and LCO) = 0. ( 3 4  
The first reflected field dl), defined in (2.7), has already been obtained by 
Simha (1936) in connection with suspension viscosity. Using Lamb's 
(1932, p. 594) general solution in spherical coordinates, Simha's result 
can be expressed in the form 
v(l) = V x (rx'?;) + V(@?i +@EL +@?k + (1/2p)r2p(J; - (1/30p)r2p(lk) + 

+ (l/p)r(pE; + w\+ &p?4), (3 .3)  

(3.4) 
and 

where r is the radius vector drawn from the sphere origin, and P-(, ,+~),  

p(1) = p - ,  (1) +PC", +PEL, 
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$'",/p = CR,2r+P3(cosO), OFL = DR; r--2Pl(cos e) ,  
OF\ = ER; r3 cos +Pi(cos 0 ) ,  

XFL = GRo Y - ~  sin r#~P,l(cos 0 ) )  

= FR; Y-~P~(COS 8), 

with the constants given by 

I A = #a[U-  Uo{l - (b2/Ri)- f ( a 2 / R i ) } ] ,  

B = - ~ L z U , ( ~ / R , ) ( ~ / R , ) ~ ,  
D = ;a(a/Ro)z[U- Uo{l - (b2/R,2) -:(a2/Rz)}], 

G = aUo(b/Ro)(a/R,)2. 

C = - SaUo(a/Ro)4, 

i E =  - - a  5 Uo(b/Ro)(a/Ro)*, F = - @Uo(a/Ro)6, 

,@-(n+l) and x - ( ~ + ~ )  are solid spherical harmonics of degree - (n + 1) defined 
as follows : 

p"/p = Ar-2Pl(cos d ) ,  1 p'lsip = B R 0 r 3  COS~P;(COS e),  

The quantities P,(cos 0 )  and P;(cos 0 )  are Legendre polynomials of order n, 
and associated Legendre polynomials (of the first kind) of order n and 
rank m, respectively. For reference, the following values appear in 
equation ( 3 . 5 )  : ' (3.7) 

P , ( ~ ~ ~  e )  = cos 8, Pi (cos 0 )  = sin 8, 

p;(cOs e )  = 3 sin e cos e, P,(COS 8) = 4(5 cos3e - 3 cos 81.1 

The drag and rotational moments experienced by the sphere cam be 
obtained from the relations 

W(1) = - 477'i7(r3p(1)3), (3.8) 

and L(1) = - 8rV(r3~(1)2).  (3.9) 

These relations apply quite generally to Lamb's solution. Noting from (3.5) 
that r3p(1L = pArcos8 = PAX and introducing the value of A from (3.6) 
results in 

W(l) = - i, 6.rrpa[ U -  Uo{l - (b2/Ri) - $(a2/Ri)}] .  (3.10) 

I n  a like manner, application of the relation r sin 4 sin 0 = x yields 

LC1) = - i, 8.rrpa2Uo(b/Ro)(a/Ro). (3.11) 

If figure 2 represents a meridian plane passing through both the sphere 
origin and cylinder axis, the tendency of the couple is to rotate the sphere 
in a clockwise direction. 

We shall limit ourselves in the subsequent development to an 
approximate solution in which the ratio of sphere-to-cylinder radius a/Ro 
is small. The terms 
in (3.5) are such that a final expression for the drag, correct to zeroth and 
first powers of a/Ro, can ultimately be obtained by retaining only the p(JL 
harmonic in the present solution. Thus, in place of the previous results, 

This covers most situations of practical interest. 
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we now resort to the approximate solution 

and 

where 

with the constant H defined by 

To the present degree of approximation, the drag is now given by 

Howard Brenner and John Happel 

v ( I )  = (1/2p)V(r2p(lh) + ( l /p )rp!! i ,  (3.12) 

p(1) + p m ,  - ( 3 . 1 3 )  

(3.14) 

( 3 . 1 5 )  

(3.16) 

&/p = Hr-' cos 8 = H(z/r3) ,  

H = Qa[U- Uo(l - (b2/Ri ) ) ] .  

W(l) = - iZ6rpa[U- -  Uo(l - (b2 /R i ) } ] ,  
while the rotational moment remains unaltered. 

4. TRANSFORMATION TO CYLINDRICAL COORDINATES 

In order to compute the field d2), defined in (2.8), it is necessary to. 
establish the form taken by 6 1 )  at the cylinder wall, R = R,. This is best 
done by transforming the latter field to  cylindrical coordinates (R, @, Z), 
originating along the cylinder axis. With the expression for p F J p ,  given 
in (3.14), and the aid of the relation 

it is easy to show that an alternative form for the first reflected field is 
V(l/r)  = -r/r3, (4.1) 

v(l) = +H[Z(l /r) i , -  V(z /r )] .  (4.2) 
In  terms of the desired coordinates we have 

and 

. .  
1,  = lZ 

. a  . l a  . a  
v=1,,+1 - - - 1  - 

GR %a@ zaz' (4.4) 

so that our objective may be attained by transforming the scalar functions 
l / r  and x / r  to these coordinates. 

Watson (1922) gives the relation 

l / r  = (p2 = ( 2 / r )  lw Ko(Xp)cos Xz dA, (4.5) 
0 

where KO is the modified Bessel function of the second kind of order zero. 
Although this transformation is only valid for p > 0, the restriction is 
inconsequential since it is sufficient for our immediate purposes to evaluate 
v(l) only in the vicinity of the cylinder wall. Noting that 

p = (R2 + b2 - 2bR cos (4.6). 
we can avail ourselves of the further transformation, 

00 

Ko(Xp) = 2 K,(hR)l,(hb)~~sK@, 
k = - w  

(4.7) 

given by Watson. Here, I, and K,  are modified Bessel functions of the 
first and second kinds, respectively, of order K .  The relation is valid only 
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for R > b. For the reason outlined above, this restriction is of no. 
consequence. These expressions combine to.give 

T o  obtain the second scalar transformation we observe, upon performing 
the indicated differentiations in the following equation, that the following 
identity is valid : 

zK,(XR)I,(Xb)coshx = - [K,(hR)I,(Xb)sin hZ] -sin hZ- [K,(XR)l,(hb)]. 

Thus, if (4.8) is multiplied by z ,  we obtain with the aid of the above 

a a 
ah ah 

The first term in brackets vanishes at the upper and lower limits of 
evaluation, h = 0 and co. Upon performing the indicated differentiation 
in the second expression, we arrive at the requisite transformation, 

The differentiations denoted by primes are with respect to the entire 
argument. 

I t  is now a relatively simple matter to obtain the desired transformation, 
m 03 

[v(l)lRfl = iR(l/r) 2 c o s ~ ~  \ ak(h)sinhzdh+ . 
I;=-m - 0  

m 

+ ia(l/n) 2 sin ,la P,(h)sin AZ d~ + 
k = -  m 0 

+ iz(l/n) 5 cosk0 iz yk(h)cosXZ dh, (4.10) 
k = -  Gc n 

where we have written 

a,@) = H[AR,K,(hR,)l,(hb) + 

f l k ( X )  = -Hk[(b/Rn)Kk(XR,)l;(hb) + Ki(hRO)lk(hb)], 

+ hbK;(hRo)lL(hb) + {k2/(hRg))Kk(hRO)lk(hb)], (4.1 1) 
(4.12) 

+ hbK, (hR,)I&lb) + 2Kk(XR0)Ik (hb) 1. (4.13 ) 
Y k ( X )  = H[h& Ki(hR,)lk(hb) + 

These relations have been simplified to some extent by the use of Bessel’s 
modified equation, 

K p R )  = -K;(hR)/(hR) +(1  +R2/(X2R2)}Kk(hR). (4.14) 
An analogous expression for the initial pressure field at the cylinder wall 
can be obtained from (3.13), (3.14) and (4.8) with the assistance of the 
relation z / r 3  = - a(l/r)/az, yielding 

[p(1)IR, = ( 2 p H / ~ )  2 cosR@ XKk(hRo)Ik(hb)sin hZ dh. (4.15) 
oj 

k= - OD 0 
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5 .  THE SECOND REFLECTION, d2) 
A general solution of (2.4) and (2.5) in cylindrical coordinates, suitable 

for the field d2), is given by 

where a,, 'I?, and Ilk are arbitrary cylindrical harmonic functions of order k 
in (R, @, 2) coordinates. That this is, indeed, a simultaneous solution of 
the creeping motion and continuity equations is best verified by making 
the substitution R a/aR = X(a/aX) + Y(a/aY) in (5.1) and carrying out 
the operations indicated by (2.4) and (2.5) in Cartesian coordinates. 

These equations are perfectly general and would be applicable for the 
fields d4), v (~ ) ,  etc. In the present instance, the harmonic functions are 
assumed to have the form 

1 nL2) = - (l/n)cosk@ jm k1nk(h)l,(XR)sinAZ dh, 

Yi?) = - ( I /  ~ ) C O S  k@ J h-lz),(h)l,(hR)sin hZ dh, 

0 

I - m  

t 0 
(5.3) 

J Q[z) = - (l/n)sin k@ 1 h-lw,(h)l,(hR)sin XZ dh. 

The functions n,(X), +,(A) and ok(X) are to be determined from the 
boundary conditions expressed by (2.8). Upon substituting values from 
( 5 . 3 )  into (5.1), we eventually find 

0 

+ n,(h)XRI,"(hR) sinhi? dh - 1 

m 

- iz(l/n) 2 c o s k ~  j " [$,(X)I,(AR) + ~,(A)XRIL(AR) + 
%=-m 0 

+n,(X)l,(hR)]co~hZ dh. (5.4) 

Evaluation of the above at R = Ro, and comparison to (4.10) by means of 
the boundary condition, 

leads to three simultaneous equations involving the functions n,(h), +,(A) 
and o k ( h )  in terms of cck (X) ,  pk(X) and yk(h) .  Solving these equations and 
introducing values for the latter functions from (4.11) to (4.13) gives: 

[v(2)Iao = - [v(l)],*, (5.5) 

'rrk(h) = ~ ~ , ( h R o ) I , ( h ~ ) ~ I , ( h R o ) } - l +  t,@>t (5.6) 
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= - [ I+  (hRO)I;(~RO){~,(~RO)}-ll.rr,(~) + 
+ H{I,(hR,))-l[hR, K&m,)I,(Ab) + 

+ hbKk(XRo)l~(hb) + 2Kk(hRo)Ik(hb)], (5.7) 
and 

where ek(h)  in (5.6) is given by 
w ~ ( X )  = 2K{hR0 l~(hRo))-l[l,(hRo).rr,(X) - HKk(hRo)l,(hb)], (5.8) 

S k ( h )  = HIIk(Xb)l~(XRo){I,((hRo)}-l - (b/RO)I;(hb)l x 
x [2K21,3(hR0){ (hRo)21;(hRo)}-1 + {hRo + (K2/(XRo)))1,2(hRo) - 

- 21k(hR0)I;(m0) - XR,[I;(XRo)]2]-1. (5.9) 

These equations have been simplified to some extent by means of the 
relations 

and 
K;(hRo)Ik(hRo) - K&lRo)I;(hRo) = - l/(hRo). (5.10) 

The additional boundary condition, d2)--+0 as Z +  2 CO, is met because 
v(l)+O as Z+ +. co and v(l) and d2) are related by (5.5). 

The pressure drop due to the first two reflected fields can now be 
computed. Substitution of the value of IIg), given in (5.3), into the 
expression for P ( ~ ) ,  given by (5.2), and evaluation at R = R,, using the 
value of r k ( h )  from (5.6), yields 

1; (M0) = - l;(hRo)/(hRo) + { 1 -I- K2/(h2R,2)}I,(hRo), 

As evidenced by (4.15), the lead term in the above expression is simply 
- [p(l)]E,,  so that 

[p(1) +p(2)IR, = - (2pL/r) 2 cask@ lm A[,(X)l,(hR,)sinXZ dh. (5.12) 

From (2.14), the pressure drop due to these first two reflections is, 
therefore, 

dh, (5.13) 4P m sin hZ lim 2 coskQ 1 qk(h)- 

k = - -  0 

W 

(AP1+AP2) = - nR, Z+m k=  - m 0 h 
where we have written 

77k(X)  = (hRo)25k(h)lk(hRo). (5.14) 

By Dirichlet’s theorem, 

(5.15) 

This limit, as X - t O  + , can easily be obtained by expanding the Bessel 
functions in series for small values of their arguments ; whence, 

(5.16) 4H(1- b2/R,2) for k = 0, 
? l k ( O + )  = qk(0)  = - 10 for K # 0, 
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from which, with the definition of H in (3.15), we finally obtain 

(AP, + AP,) = (12pa/R,")( 1 - b2/Ri) [ Uo( 1 - b2/R,2) - U].  (5.17) 
A more physically meaningful representation is 

(5.18) 
For the small values of (a /Ro)  for which the present approximation is valid, 
the first term in brackets represents the additional force (above Poiseuille's 
law) required to force fluid through the tube. The second term is the 
mean velocity with which fluid traverses the cylinder. Their product gives 
the additional energy dissipation incurred by the presence of the sphere in 
the original field of flow. On the right-hand side of this expression, the 
first term in brackets is the frictional force experienced by the sphere 
(equation (3.16)), whereas the second bracketed term corresponds to the 
local velocity of the unperturbed parabolic field in the vicinity of the sphere. 
It appears then that, for a sufficiently small sphere, the product of the drag 
and local velocity also gives the additional energy dissipation caused by the 
presence of an obstacle in the field of flow. 

Within the volume of space presently occupied by the particle, the 
field v ( ~ )  has no singularities. The sphere can therefore experience no 
frictional forces or couples in virtue of this field, and we have 

W(2) = 0, (5.19) 

and L(2) = 0. (5.20) 

6. THE THIRD REFLECTION 

The results obtained thus far for drag and pressure drop may be regarded 
as the zeroth approximation in powers of a/Ro ; that for rotational moment 
is correct to the first power. T o  evaluate each of these quantities correctly 
to the next highest powers in a/Ro, it is necessary to consider the third and 
fourth reflections. Fortunately, exact solutions for d3) and d4) are not 
required to arrive at exact values for these initial corrections. 

The frictional resistance and couple associated with d3) can be calculated 
exactly by means of Faxen's (1927) laws (see, also, Peres (1929)). In  the 
present application, these laws take the form 
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[ (AP, + AP,)n-R;] U, = [67rpa( Uo( 1 - b2/Ri)  - U } ]  [ Uo( 1 - b 2 / R 3 ] .  

W(3) = 6 x p a [ ~ ( ~ ) ] ,  + 7 r ~ ~ [ V p ( ~ ) ] , ,  (6.1) 
and L(3) = 47rpa3 [ V x v(2)],, (6.2) 
where the subscript zero indicates that the function in brackets is to be 
evaluated at the sphere centre. The relations are valid for arbitrary fields, 
d2) and d3), provided that each is in accord with the equations of slow 
motion and they are related by (2.9). To  preserve the consistency of the 
present results regarding powers of a/Ro, we omit the last term of (6.1). 

In terms of the (R, CD, 2) system of coordinates, the centre of the sphere 
is situated at the point (R = b, CD = 0, 2 = 0). Thus, from (5.4) and (6.1) 
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Employing the values of +k(h) and r k ( h ) ,  given by (5.6) and (5.7), and 
putting cc = AR,, this becomes 

where 
W(" = - i, 6rpa[ U -  U,(1 - b 2 / R ~ ) J f ( b / R , ) ( a / R , ) ,  (6.4 1 

and for brevity we have put /3 = (b/R,). Equation (5.10) has been employed 
in simplifying the above. 

Using the method indicated in the Appendix, f ( b / R , )  has been evaluated 
as a power series in even powers of b / R ,  and the first two terms, obtained 
by numerical integration, are 

This development is valid for values of b/R,-+O, near the cylinder axis. 
In  the vicinity of the cylinder wall, where b/R,+ 1, it is possible to make 
an exact calculation, thereby obtaining (see the Appendix) 

f (b /R , )  = 2.1047 - 0*6977(b/R0)2 + ... . (6.7) 

lim (1 - b/R,)f(b/R,) = 2 .  (6.8) 
b/Ro+l 

This limit is approached asymptotically. A tentative plot of the function 
(1 - b/R,,)f(b/R,) us b/R,, derived from these limiting expressions, is 
presented in figure 3 .  This should be of some assistance in the extrapolation 
of values of .f(b/R,) beyond those for which (6.7) is strictly applicable. 
In view of the inadequacy of the formulae for intermediate values of the 
eccentricity b/R,, such a plot can only be regarded as preliminary. 

Equation (5.4) results in the expression 

[V x v(~)], = i z ( l / r )  2 jm [2Ark(X)IL(hb) -kb-lwk(h)Ik(hb)] dA, (6.9) 

where we have noted that 
[ i @ I O  = i,. (6.10) 

Substituting in (6.2) and employing both (5.6) and (5.8) eventually gives 
L(3) = - i, %pa2[ U -  U,( 1 - b2 /R~)]g (b /R , ) (a /R , )2 ,  (6.11) 

where 

m 

k = - m  0 

J J  

The function 6k(c() is defined in (6.6). 



206 Howard Brenner and John Happel 

Figure 3. Tentative plot of equation (6.5) for calculating drag and pressure drop. 

3 

Figure 4. Tentative plot of equation (6.12) for calculating rotational moment. 
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For small values of the eccentricity b/R,, numerical integration of the 

(6.13) 
In  the limiting case, 

lim (1 - b/Ro)2g(b/R,) = 8. (6.14) 

Again, this limit is achieved asymptotically. A preliminary graph of 
( 1  - b/Ro)2g(b/Ro) ex b/R,, prepared with the aid of these limiting forms, 
is shown in figure 4.  

foregoing yields 
g(b/R,) = 1*296(b/R,) + ,.. , 

and the expansion proceeds in odd powers of b/R,. 
as the wall is approached, an exact calculation gives 

blRo+l 

7. T H E  FOURTH REFLECTION 

In  order to obtain the first correction to the zeroth approximation for 
pressure drop it is necessary to consider the field d4). Here, again, an exact 
calculation to the first power in (n/Ro) can be made without a corresponding 
knowledge of v(~) .  If we 
resort to Lamb's general solution for the field v (~) ,  reflected from the sphere, 
then by analogy to (3 .8) ,  we have 

This can be solved for the solid spherical harmonic function p(3L by 
multiplying scalarly by r ; whence, 

This can be seen from the following argument. 

47rV(r3p'3)2) = - W(3). (7.1) 

a 
475-r - (r3pp'"&) = - 

ar 
. r . W(3). 

However, p?', is, among other things, a homogeneous polynomial of order 
- 2. Thus, by Euler's theorem on homogeneous polynomials, 

a 
Y (p'"',) = -2p(_3)2. 

This makes p(3)2 = - (4m3)-4. W". 
Using the expression for W(3) in (6.4), and noting that r . i, = x, yields the 
harmonic function, 

where we have written 

As in equations (3.12) and ( 3 . 1 3 ) ,  that part of the entire velocity and pressure 
fields, v ( ~ )  and P ( ~ ) ,  associated with this particular harmonic function are 

( l / p ) p ? ;  = Jr-2 cos 0, ' (7.2) 

J = $a[U-  U,(1 - bz/Rz)]f(b/Ro)(a/Ro).  (7.3) 

v ( ~ )  + (1/(2p))V(r2p(3)2) + (l/p)rp?k, (7.4) 
and p(3) . -  p'". (7.5 1 

Of all the terms in Lamb's general solution, the only harmonic function 
which introduces the sphere radius a to  the first power in the velocity and 
pressure fields is the p - ,  harmonic. This is the dominant term as r +  03. 

Thus, as regards powers of a and, ultimately, in the next reflection, powers 
of (all?,,), this is the only term which need be retained to obtain results 
which are correct to  the first power in (all?,). To this degree'of approxi- 
mation, (7.4) and (7.5) may be regarded as exact representations of the 
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velocity and pressure fields. 
in (3.12) to (3 .15) ,  we find 

T o  the same degree of approximation, it is easy to see that 

This immediately leads to the result 

With the values for J and H, and the expression for the pressure drop due 
to the first two reflected fields, quoted in (5.17), this becomes 

(AP, +AP4) = (12pa/R3(1 -b2/Rg)[Uo(1 -b2/Ri) - U]f(b/R,)(a/R,). (7.9) 

The fourth reflected field can have no singularities within the volume 
occupied by the sphere, so that 

W'4j = 0, and L(4j = 0. (7.10) 
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Comparing these expressions to those given 

v ( ~ )  = (J /H)v( l ) ,  j$3) = (J/H)p('). (7.6) 

d4) = ( J / H ) v s ,  p(4) = ( J /H)P(~) .  (7.7) 

(AP, + AP,) = (J /H)(AP,  + AP,). (7.8) 

8. FINAL RESULTS 

Upon summing the individual results for drag, rotational moment, and 
pressure drop we find 

L = - i, 8npa2{Uo(b/Ro)(a/Ro) - [ Uo(l  -b2/Rg) - U]g(b/R,)(a/R,)2 + ...}, 

and 

W = i,6npa[Uo(1 -b2 /R i ) -  U ] [ l  +f(b/R,)(a/R,)+ ...I, ( 8 . 1 )  

(8.2) 

(8.3 1 
AP, = (12pa/R;)(l -b2/Ri)[Uo(1 -b2/R;) -  U ] [ l  +f( b/R,)(a/R,)+ ...I. 

These expressions are correct to the highest powers of (all?,) quoted. 
The  case of a sedimenting sphere in a quiescent fluid is obtained by putting 
U, = 0 in the above. 

A form of the above equations suitable for examining situations in which 
the sphere is near the container walls can be obtained by expressing the 
previous results in terms of the ratio of sphere radius to minimum distance 
(of the sphere centre) from the wall, a/(R,-b). This results in 

W = i, 6npa[ U,( 1 - b2/Rg) - U ]  1 + ( 1  - b/R,),f(b/R,) - (R:-b) +*..I, 
(8.4) 

[ 
U,(b/R,)(l - b/R,) 
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As previously observed, the quantities (1 - b/R,)f(b/R,) and (1 - b/Ro)2g(b/Ro) 
attain limiting values of 4 and 8, respectively, as b/Ro+l. It should be 
noted that 

a < 1, R,-b 
where the equality sign applies when the sphere touches the wall of the 
cylinder. 

9. DISCUSSION OF RESULTS 

When the sphere is at the cylinder axis, b/Ro = 0, equations (8.1) to (8.3) 
reduce to results previously given by Happel & Byrne (1954) and, 
independently, by Wakiya (1953) and Haberman (1957). 

It appears from the results of this investigation that both the drag and 
pressure drop are even functions of the eccentricity b/Ro. This is to be 
expected, since symmetry requires that if the sphere is moved from its 
present location, R = b, to the opposite side of the cylinder axis, R = -b,  
neither the direction nor the magnitude of the drag should be altered. 
Likewise, the pressure drop should be unaffected by this transition, in 
accord with present calculations. On the other hand, equation (8.2) shows 
that the rotational moment is an odd function of b/R,. This conclusion, 
again, coincides with intuition, since the sphere will tend to rotate in a 
direction opposite to its original direction, without alteration in the 
magnitude of the rotational couple, when it is placed in mirror-image 
position on the opposite side of the cylinder axis. Of course, at the 
cylinder axis, we have 

L(0) = 0. (9.1) 
Further support for the validity of the present results is provided by 

observing that, in the absence of external forces acting on the sphere, the 
viscous pressure drop, due to the presence of a particle in the original field 
of flow, is an essentially positive quantity. This stems from a one-to-one 
correspondence between pressure drop in rectilinear flow and energy 
dissipation. Thus, equation (8.3) shows that, for net flow in the 
+ x-direction, a positive pressure drop implies the inequality 

Uo( 1 - b2/Rg) 3 U. 

Inasmuch as Uo(l - b2/Rg) is the local fluid velocity, this shows that the 
sphere necessarily lags the fluid, an obviously correct inference. Moreover, 
equation (8.1) correctly indicates that, in these circumstances, the frictional 
force on the sphere is always in the direction of net flow, and the sphere 
is thus dragged along by the fluid. 

There are some remarkable conclusions to be drawn from the present 
calculations. The most interesting of these is, perhaps, the fact that the 
drag experienced by a small sphere sedimenting in a quiescent fluid does 
not increase monotonically as we proceed outward from the cylinder 
axis towards the wall. Rather, it attains a minimum value at some 

F.M. 8 
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intermediate point. 
present circumstances, has the form 

As we proceed away from the axis, the function,f(b/R,), and hence the drag, 
decreases initially as required by (6.7) ; however, as the wall is approached, 
equation (6.8) shows that f (b/Ro)  ultimately increases like 1/(1 -b/R,). 
Evidently, there is some intermediate value of eccentricity for which the 
drag is least. More extensive calculations are needed to locate this point 
with certainty. Experimental verification of the existence of a minimum 
may be a matter of considerable difficulty if it occurs near the axis, because 
of the relative magnitude of the ‘eccentricity’ term in (6.7) (for small 
values of (b/R,)) contrasted with the lead term. 

One might suspect that the results for the sedimentation of a small 
particle through a quiescent fluid, near the cylinder wall, would be exactly 
the same as for a sphere settling in the vicinity of a plane wall. Surprisingly, 
this is not the case. Lorentz’s (1907) results for the latter problem are 
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This can be seen quite clearly from (8.1) which, in 

W = -iC6n-paU[1 +f( b/Ro)(a/Ro)+ ...I. ( 9 4  

W =  - i ,6~rpuU (9.3) 

L =  -i,8n-pa2U (9.4) 

while Faxen (1923) gives 

where h is the perpendicular distance from the sphere centre to the wall. 
These should be compared with equations (8.4) and (8.5), respectively, 
which, when we set Uo = 0 and utilize (6.8) and (6.14), take the following 
form near the cylinder walls : 

and 

W =  -i,6n-paU 

L = - i , 8 ~ p u ~ U [ 3 ( L ) ~  8 Ro-b +...I. 
The distances from the wall, h and R, - b, are comparable. Thus, in the 
case of frictional resistance, the difference between the two results is simply 
a numerical coefficient as regards the first power of the ratio of sphere 
radius to distance from wall. T h e  discrepancy in rotational moment is, 
however, of a more fundamental nature, since it involves differences in the 
exponents of the ratios, u/h and u/ (Ro-b ) .  

Experimental studies aimed at the verification of the foregoing equations 
are currently being conducted at New York University. 

The  treatment of the present problem by means of the linearized 
Navier-Stokes equations fails to reveal the presence of sidewise forces 
tending to move the sphere towards the tube centre. I n  any real situation, 
‘Bernoulli’ forces tending to produce this result must exist. This lack 
of sidewise forces is a characteristic failing of the creeping motion equations, 
and stems from a neglect of fluid inertia in the original equations of motion. 
Since our present results show the force to be absent in the limiting case 
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as the Reynolds number tends to zero, it appears that, at low Reynolds 
numbers, this force should be proportional to the relative particle Reynolds 
number discussed in $2. Other considerations show this force to be an 
odd function of b/R,. 

It would be interesting to repeat the present study using the Oseen 
(1928) equations, which partially take account of fluid inertia. This, in 
conjunction with a corresponding experimental investigation of sidewise 
forces, would provide a stringent test of the Oseen equations. Here, the 
test would not be obscured by the fact that this approximate inertial effect 
is merely a second-order effect superimposed upon the primary viscous 
effect, as in Oseen's (1928) correction of Stokes's law. In this connection, 
it is of interest to note that the Oseen equations have already been employed 
by Faxen (1923) (see, also, Oseen (1928)), for the case of a sphere moving 
along the axis of a cylinder through a quiescent fluid. This, of course, 
does not provide a test in the sense of the above. 

The authors would like to thank the Research Corporation of America 
and the National Science Foundation (Contract no. NSF(G)1710) for 
providing financial support for this study. They would also like to thank 
Louis Theodore for performing the numerical integrations. 

APPENDIX 

Calculation o f f @ )  and g(P) as p-+O and P-+1 

This is done by multiplying each side of the identity, 
The expression forf(P) given in (6.5) can be put in more tractable form. 

(A11 
d 

doc - [Kk(oc)Pk(oc)l = - 1 / [ 4 ( 4 1  

by ocl;(oc/3) and partially integrating the result, thereby obtaining 

The function in brackets vanishes at the upper and lower limits, and thus 

-- ;$; ['k+I(ocVk(ocP) - P'k(ar)1k+l(ocP)I2 ] doc. (A 2) 

A series development of f(p) can be carried out by expanding the Bessel 
functions of argument ocp in power series and evaluating the remaining 
integrals involving oc by numerical techniques. An expression correct to 
powers in p2 requires that we only retain the terms corresponding to 
k = 0 , l  and - 1 in the infinite summation. To  this degree of approximation, 
we obtain 

f ( B )  = f ( O )  + ~ ( P 2 / ~ ) ( @ ~ -  4Sz + Q3: ~ Q P ) .  
9 2  
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The lead term, f(O), has already been evaluated by Happel & Byrne (1954) 
as well as by Haberman (1956), in connection with the motion of a sphere 
along the cylinder axis. Their result (which has been checked) is 

Numerical integration of the remaining integrals gives 

Q1 = j OD uZ[{I;(u)}- l+ iI f(~t))-l]  du = 9.4488, 
0 

These combine to give the expression forf(p) cited in (6.7). The  modified 
Bessel functions of the second kind, which otherwise cause difficulty in 
numerical integration because of their behaviour at u = 0, have been 
eliminated by resorting to (A 1) and variations thereof. 

T o  obtain the limiting form as ,B+ 1, we note from (A2) that 

But, because of the monotonicity of the function I k ( x )  in coujunction with 
its essentially positive nature, one can demonstrate that 

by putting CD = 0 in (4.7) and (4.6). However, 

from which the limiting form given in (6.8) follows without difficulty. 

of /3 gives 

where 

A series expansion of g(p), defined in (6.12), correct to the first power 

g(P) - $@/n)($Q1+ 4123 + JQs), 

This results in (6.13). 
Finally, from (6.12), 

Resorting to (A3) and (A4) it is now an easy matter to verify the correctness 
of (6.16). 
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